skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ruano, Diego"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract CSS-T codes were recently introduced as quantum error-correcting codes that respect a transversal gate. A CSS-T code depends on a CSS-T pair, which is a pair of binary codes$$(C_1, C_2)$$ ( C 1 , C 2 ) such that$$C_1$$ C 1 contains$$C_2$$ C 2 ,$$C_2$$ C 2 is even, and the shortening of the dual of$$C_1$$ C 1 with respect to the support of each codeword of$$C_2$$ C 2 is self-dual. In this paper, we give new conditions to guarantee that a pair of binary codes$$(C_1, C_2)$$ ( C 1 , C 2 ) is a CSS-T pair. We define the poset of CSS-T pairs and determine the minimal and maximal elements of the poset. We provide a propagation rule for nondegenerate CSS-T codes. We apply some main results to Reed–Muller, cyclic and extended cyclic codes. We characterize CSS-T pairs of cyclic codes in terms of the defining cyclotomic cosets. We find cyclic and extended cyclic codes to obtain quantum codes with better parameters than those in the literature. 
    more » « less